An Interior-point Subspace Minimization Method for the Trust-region Step
نویسندگان
چکیده
Abstract. We consider methods for large-scale unconstrained minimization based on finding an approximate minimizer of a quadratic function subject to a two-norm trust-region inequality constraint. The Steihaug-Toint method uses the conjugate-gradient algorithm to minimize the quadratic over a sequence of expanding subspaces until the iterates either converge to an interior point or cross the constraint boundary. Recent extensions of the Steihaug-Toint method allow the accuracy of the trust-region step to be specified, thereby allowing the overall cost of computing the problem functions to be balanced against the cost of computing the trust-region steps. However, if a preconditioner is used with the conjugate-gradient algorithm, the Steihaug-Toint method requires the trust-region norm to be defined in terms of the preconditioning matrix. If a different preconditioner is used for each subproblem, the shape of the trust-region can change substantially from one subproblem to the next, which invalidates many of the assumptions on which standard methods for adjusting the trust-region radius are based. In this paper we propose a method that allows the trust-region norm to be defined independently of the preconditioner. The method solves the inequality constrained trust-region subproblem over a sequence of evolving low-dimensional subspaces. Each subspace includes an accelerator direction obtained from a Newton method applied to an primal-dual interior method. A crucial property of this direction is that it can be computed by applying the preconditioned conjugate-gradient method to a positive-definite system in both the primal and dual variables of the trust-region subproblem.
منابع مشابه
A Subspace Minimization Method for the Trust-Region Step
We consider methods for large-scale unconstrained minimization based on finding an approximate minimizer of a quadratic function subject to a two-norm trust-region constraint. The Steihaug–Toint method uses the conjugate-gradient method to minimize the quadratic over a sequence of expanding subspaces until the iterates either converge to an interior point or cross the constraint boundary. Howev...
متن کاملA Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems
BOUND-CONSTRAINED MINIMIZATION PROBLEMS MARY ANN BRANCH , THOMAS F. COLEMAN AND YUYING LI Abstract. A subspace adaptation of the Coleman-Li trust region and interior method is proposed for solving large-scale bound-constrained minimization problems. This method can be implemented with either sparse Cholesky factorization or conjugate gradient computation. Under reasonable conditions the converg...
متن کاملAn Interior-Point Trust-Region Algorithm for General Symmetric Cone Programming
An interior-point trust-region algorithm is proposed for minimization of general (perhaps, non-convex) quadratic objective function over the domain obtained as the intersection of a symmetric cone with an affine subspace. The algorithm uses a trust-region model to ensure descent on a suitable merit function. Convergence to first-order and second-order optimality conditions is proved. Numerical ...
متن کاملConvergent Infeasible Interior-Point Trust-Region Methods for Constrained Minimization
We study an infeasible interior-point trust-region method for constrained minimization. This method uses a logarithmic-barrier function for the slack variables and updates the slack variables using second-order correction. We show that if a certain set containing the iterates is bounded and the origin is not in the convex hull of the nearly active constraint gradients everywhere on this set, th...
متن کاملروش به روز رسانی متقارن از مرتبه اول برای حل مسایل بهینه سازی مقیاس بزرگ
The search for finding the local minimization in unconstrained optimization problems and a fixed point of the gradient system of ordinary differential equations are two close problems. Limited-memory algorithms are widely used to solve large-scale problems, while Rang Kuta's methods are also used to solve numerical differential equations. In this paper, using the concept of sub-space method and...
متن کامل